Valor exponencial em movimento média inicial


Mudando a média nas estatísticas. Uma média móvel. Também chamado de média móvel. Significado móvel. Rolling significa. Média temporal deslizante. Ou média de corrida. É um tipo de filtro de resposta de impulso finito usado para analisar um conjunto de pontos de dados criando uma série de médias de diferentes subconjuntos do conjunto de dados completo. Dada uma série de números e um tamanho de subconjunto fixo, o primeiro elemento da média móvel é obtido tomando a média do subconjunto fixo inicial da série de números. Em seguida, o subconjunto é modificado ao avançar, exceto o primeiro número da série e incluindo o próximo número que segue o subconjunto original da série. Isso cria um novo subconjunto de números, que está em média. Este processo é repetido em toda a série de dados. A linha de traçado que liga todas as médias (fixas) é a média móvel. Uma média móvel é um conjunto de números, cada um dos quais é a média do subconjunto correspondente de um conjunto maior de pontos de referência. Uma média móvel também pode usar pesos desiguais para cada valor de referência no subconjunto para enfatizar valores particulares no subconjunto. Uma média móvel é comumente usada com dados de séries temporais para suavizar flutuações de curto prazo e destacar tendências ou ciclos de longo prazo. O limite entre curto prazo e longo prazo depende da aplicação, e os parâmetros da média móvel serão definidos de acordo. Por exemplo, muitas vezes é usado na análise técnica de dados financeiros, como os preços das ações. Retornos ou volumes de negociação. Também é usado em economia para examinar o produto interno bruto, o emprego ou outras séries temporais macroeconômicas. Matematicamente, uma média móvel é um tipo de convolução e, portanto, pode ser vista como um exemplo de um filtro passa-baixa usado no processamento de sinal. Quando usado com dados não temporizados, uma média móvel filtra componentes de freqüência mais alta sem conexão específica ao tempo, embora normalmente algum tipo de pedido esteja implícito. Visto de forma simplista, pode ser considerado como suavizar os dados. Média móvel simples Edit Em aplicações financeiras, uma média móvel simples (SMA) é a média não ponderada dos pontos de referência anteriores. No entanto, em ciência e engenharia, a média é normalmente tirada de um número igual de dados em ambos os lados de um valor central. Isso garante que as variações na média estão alinhadas com as variações nos dados em vez de serem deslocadas no tempo. Um exemplo de uma média de corrida simples igualmente ponderada para uma amostra de preço de fechamento de nove dias é a média dos preços de fechamento dos dias anteriores. Se esses preços são então, a fórmula é: ao calcular valores sucessivos, um novo valor entra na soma e um valor antigo cai, o que significa que um somatório total a cada vez é desnecessário para este caso simples. O período selecionado depende do tipo de movimento de Interesse, como curto, intermediário ou longo prazo. Em termos financeiros, os níveis médios móveis podem ser interpretados como suporte em um mercado crescente ou resistência em um mercado em queda. Se os dados utilizados não estiverem centrados em torno da média, uma média móvel simples fica atrás do ponto de referência mais recente por metade da largura da amostra. Um SMA também pode ser desproporcionalmente influenciado por pontos de referência antigos ou novos dados entrando. Uma característica do SMA é que, se os dados tiverem uma flutuação periódica, a aplicação de um SMA desse período eliminará essa variação (a média sempre contendo Um ciclo completo). Mas raramente é encontrado um ciclo perfeitamente normal. 1 Para uma série de aplicações, é vantajoso evitar o deslocamento induzido usando apenas dados passados. Portanto, uma média móvel central pode ser calculada, usando dados igualmente espaçados do lado do ponto na série onde a média é calculada. Isso requer o uso de um número ímpar de pontos de referência na janela de amostra. Média móvel cumulativa Edit Em uma média móvel cumulativa. Os dados chegam em um fluxo de dados ordenado e o estatístico gostaria de obter a média de todos os dados até o ponto de referência atual. Por exemplo, um investidor pode querer o preço médio de todas as transações de ações para um estoque específico até a hora atual. À medida que cada nova transação ocorre, o preço médio no momento da transação pode ser calculado para todas as transações até esse ponto usando a média acumulada, normalmente uma média igualmente ponderada da seqüência de valores x x 1. X i até a hora atual: o método de força bruta para calcular isso seria armazenar todos os dados e calcular a soma e dividir pelo número de pontos de referência sempre que um novo ponto de referência chegasse. No entanto, é possível simplesmente atualizar a média cumulativa como um novo valor xi 1 disponível, usando a fórmula: Assim, a média cumulativa atual para um novo ponto de referência é igual à média cumulativa anterior mais a diferença entre o último ponto de referência e o Média anterior dividida pelo número de pontos recebidos até agora. Quando todos os pontos de referência chegarem (i N), a média acumulada será igual à média final. A derivação da fórmula média cumulativa é direta. Usando e similarmente para i 1. é visto que a solução de esta equação para CA i 1 resulta em: média móvel ponderada Editar Uma média ponderada é qualquer média que tenha fatores de multiplicação para dar pesos diferentes a dados em diferentes posições na janela de amostra. Matematicamente, a média móvel é a convolução dos pontos de referência com uma função de ponderação fixa. Um aplicativo é remover a pixelização de uma imagem gráfica digital. Na análise técnica de dados financeiros, uma média móvel ponderada (WMA) tem o significado específico de pesos que diminuem a progressão aritmética. 2 Em um WMA de nove dias, o último dia tem peso n. O segundo mais recente n 16087221601, etc., até um. Arquivo: pesos médios móveis ponderados N15.png Ao calcular o WMA em valores sucessivos, a diferença entre os numeradores de WMA M 1 e WMA M é np M 1 1608722160 p M 16087221601608722160 p M 8722n1. Se denotarmos a soma p M 160160160160 p M 8722 n 1 por Total M. Então, o gráfico à direita mostra como os pesos diminuem, do peso mais alto para os pontos de referência mais recentes, até zero. Pode ser comparado com os pesos na média móvel exponencial que se segue. Média móvel exponencial Edit Uma média móvel exponencial (EMA), também conhecida como média móvel ponderada exponencialmente (EWMA), 3 é um tipo de filtro de resposta de impulso infinito que aplica fatores de ponderação que diminuem exponencialmente. A ponderação para cada ponto de referência mais antigo diminui exponencialmente, nunca atingindo zero. O gráfico à direita mostra um exemplo da diminuição do peso. O EMA para uma série Y pode ser calculado de forma recursiva: o coeficiente representa o grau de redução da ponderação, um fator de suavização constante entre 0 e 1. Um maior descontos observações mais velhas mais rápido. Alternativamente, pode ser expresso em termos de N períodos de tempo, onde 1601602 (N 1) Erro de script Erro de script 91 citações necessárias 93. Por exemplo, se N 16016019 é equivalente a 1601600.1, a meia-vida dos pesos (o intervalo acima do qual Os pesos diminuíram por um fator de dois) é de aproximadamente N 2.8854 (dentro de 1 se N 160gt1605). Y t é o valor em um período de tempo t. S t é o valor da EMA em qualquer período de tempo t. S 1 é indefinido. S 1 pode ser inicializado de várias maneiras diferentes, mais comumente ajustando S 1 a Y 1. Embora existam outras técnicas, como a definição de S 1 para uma média das primeiras 4 ou 5 observações. A proeminência do efeito de inicialização S1 na média móvel resultante depende de valores menores tornam a escolha de S 1 relativamente mais importante do que valores maiores, uma vez que um maior descontos observações mais velhas mais rápido. Esta formulação é de acordo com Hunter (1986). 4 Por aplicação repetida desta fórmula para diferentes tempos, podemos eventualmente escrever S t como uma soma ponderada dos pontos de referência Y t. Como: Uma abordagem alternativa por Roberts (1959) usa Y t em vez de Y t 87221. 5 Esta fórmula também pode ser expressa nos termos de análise técnica da seguinte forma, mostrando como a EMA avança no último ponto de referência, mas apenas por uma proporção da diferença (cada vez): Esta é uma soma infinita com termos decrescentes. Os N períodos em uma N-dia EMA apenas especificam o fator. N não é um ponto de parada para o cálculo da forma como está em um SMA ou WMA. Para N suficientemente grande. Os primeiros pontos de referência N em uma EMA representam cerca de 86 do peso total no cálculo: 6 A fórmula de energia acima dá um valor inicial para um determinado dia, após o qual a fórmula de dias sucessivos mostrada primeiro pode ser aplicada. A questão de saber até que ponto voltar para um valor inicial depende, no pior caso, dos dados. Grandes valores de preços em dados antigos afetarão o total, mesmo que sua ponderação seja muito pequena. Se os preços tiverem pequenas variações, apenas a ponderação pode ser considerada. O peso omitido parando após termos k está fora do peso total. Por exemplo, para ter 99,9 do peso, defina a relação acima igual a 0,1 e resolva por k. Para este exemplo (99,9 peso). Média móvel modificada Editar Uma média móvel modificada (MMA), a média móvel de execução (RMA) ou a média móvel lisa é definida como: Aplicação para medir o desempenho do computador Editar Algumas métricas de desempenho do computador, e. O comprimento médio da fila do processo, ou a utilização média da CPU, usa uma forma de média móvel exponencial. Aqui é definido como uma função do tempo entre duas leituras. Um exemplo de um coeficiente que dá maior peso à leitura atual e menor peso para as leituras mais antigas é, por exemplo, uma média L de 15 minutos de um comprimento Q da fila do processo. Medido a cada 5 segundos (diferença de tempo é de 5 segundos), é calculado como Outras ponderações Edit Outros sistemas de ponderação são usados ​​ocasionalmente 8211, por exemplo, na negociação de ações, uma ponderação de volume pesará cada período de tempo em proporção ao seu volume de negociação. Uma ponderação adicional, usada pelos atuários, é a Média Mínima de 15 pontos Spencers (uma média móvel central). Os coeficientes de peso simétrico são -3, -6, -5, 3, 21, 46, 67, 74, 67, 46, 21, 3, -5, -6, -3. Fora do mundo das finanças, os meios de execução ponderados têm muitas formas e aplicações. Cada função de ponderação ou kernel tem suas próprias características. Na engenharia e na ciência, a frequência e a resposta de fase do filtro são muitas vezes de primordial importância na compreensão das distorções desejadas e indesejadas que um determinado filtro se aplicará aos dados. Um meio não apenas suavizar os dados. Um meio é uma forma de filtro passa-baixa. Os efeitos do filtro particular usado devem ser entendidos para fazer uma escolha apropriada. Neste ponto, a versão francesa deste artigo discute os efeitos espectrales de 3 tipos de meios (cumulativo, exponencial, gaussiano). Mudando a mediana Edit De um ponto de vista estatístico, a média móvel, quando usada para estimar a tendência subjacente em uma série temporal, é suscetível a eventos raros, como choques rápidos ou outras anomalias. Uma estimativa mais robusta da tendência é a mediana móvel simples em relação a n pontos de tempo: onde a mediana é encontrada, por exemplo, classificando os valores dentro dos colchetes e encontrando o valor no meio. Para valores maiores de n. A mediana pode ser eficientemente calculada atualizando um modelo de esquadrão indexável. 12 Estatisticamente, a média móvel é ideal para recuperar a tendência subjacente das séries temporais quando as flutuações sobre a tendência são normalmente distribuídas. No entanto, a distribuição normal não coloca alta probabilidade em desvios muito grandes da tendência, o que explica por que tais desvios terão um efeito desproporcionalmente grande na estimativa da tendência. Pode-se mostrar que se as flutuações são assumidas como sendo distribuídas por Laplace. Então a mediana móvel é estatisticamente otimizada. 13 Para uma dada variância, a distribuição de Laplace coloca maior probabilidade em eventos raros do que o normal, o que explica por que a mediana móvel tolera os choques melhor do que a média móvel. Quando a mediana móvel simples acima é central, o alisamento é idêntico ao filtro médio que tem aplicações, por exemplo, processamento de sinal de imagem. Veja também Editar Este artigo inclui uma lista de referências. Mas suas fontes ainda não são claras porque não tem citações insuficientes. Ajude a melhorar este artigo introduzindo citações mais precisas. 32 (fevereiro de 2018) A abordagem EWMA tem um recurso atraente: requer relativamente poucos dados armazenados. Para atualizar nossa estimativa em qualquer ponto, precisamos apenas de uma estimativa prévia da taxa de variância e do valor de observação mais recente. Um objetivo secundário da EWMA é rastrear mudanças na volatilidade. Para valores pequenos, observações recentes afetam a estimativa prontamente. Para valores mais próximos de um, a estimativa muda lentamente com base nas mudanças recentes nos retornos da variável subjacente. O banco de dados RiskMetrics (produzido por JP Morgan e disponibilizado) usa o EWMA para atualizar a volatilidade diária. IMPORTANTE: a fórmula EWMA não assume um nível de variância médio de longo prazo. Assim, o conceito de volatilidade significa reversão não é capturado pelo EWMA. Os modelos ARCHGARCH são mais adequados para este fim. Um objetivo secundário da EWMA é acompanhar as mudanças na volatilidade, portanto, para valores pequenos, a observação recente afeta a estimativa prontamente e, para os valores mais próximos de uma, a estimativa muda lentamente para as mudanças recentes nos retornos da variável subjacente. O banco de dados RiskMetrics (produzido pela JP Morgan) e divulgado em 1994, usa o modelo EWMA para atualizar a estimativa diária de volatilidade. A empresa descobriu que, em uma variedade de variáveis ​​de mercado, esse valor dá uma previsão da variância que se aproxima da taxa de variância realizada. As taxas de variação realizadas em um determinado dia foram calculadas como uma média igualmente ponderada nos 25 dias subseqüentes. Da mesma forma, para calcular o valor ótimo de lambda para o nosso conjunto de dados, precisamos calcular a volatilidade realizada em cada ponto. Existem vários métodos, então escolha um. Em seguida, calcule a soma de erros quadrados (SSE) entre a estimativa EWMA e a volatilidade realizada. Finalmente, minimize o SSE variando o valor lambda. Soa simples é. O maior desafio é concordar com um algoritmo para calcular a volatilidade realizada. Por exemplo, as pessoas da RiskMetrics escolheram os 25 dias subseqüentes para calcular a taxa de variação realizada. No seu caso, você pode escolher um algoritmo que utilize preços diários, HILO e OPEN-CLOSE. Q 1: podemos usar o EWMA para estimar (ou prever) a volatilidade mais de um passo à frente A representação da volatilidade do EWMA não assume uma volatilidade média de longo prazo e, portanto, para qualquer horizonte de previsão além de um passo, o EWMA retorna uma constante Valor: Modelos de suavização média e exponencial em movimento Como um primeiro passo para se deslocar além dos modelos médios, modelos de caminhada aleatórios e modelos de tendência linear, padrões e tendências não sazonais podem ser extrapolados usando um modelo de média móvel ou suavização. O pressuposto básico por trás da média e dos modelos de suavização é que as séries temporais são localmente estacionárias com uma média que varia lentamente. Por isso, tomamos uma média móvel (local) para estimar o valor atual da média e, em seguida, use isso como a previsão para um futuro próximo. Isso pode ser considerado como um compromisso entre o modelo médio e o modelo random-walk-without-drift. A mesma estratégia pode ser usada para estimar e extrapolar uma tendência local. Uma média móvel geralmente é chamada de uma versão quotsmoothedquot da série original porque a média a curto prazo tem o efeito de suavizar os solavancos na série original. Ao ajustar o grau de alisamento (a largura da média móvel), podemos esperar encontrar algum tipo de equilíbrio ideal entre o desempenho dos modelos de caminhada aleatória e média. O tipo mais simples de modelo de média é o. Média Móvel simples (igualmente ponderada): A previsão para o valor de Y no tempo t1 que é feita no tempo t é igual à média simples das observações m mais recentes: (Aqui e em outro lugar usarei o símbolo 8220Y-hat8221 para repousar Para uma previsão das séries temporais Y feitas o mais cedo possível por um determinado modelo.) Esta média é centrada no período t (m1) 2, o que implica que a estimativa da média local tende a ficar para trás do verdadeiro Valor da média local em cerca de (m1) 2 períodos. Assim, dizemos que a idade média dos dados na média móvel simples é (m1) 2 em relação ao período para o qual a previsão é calculada: esta é a quantidade de tempo pelo qual as previsões tenderão a atrasar os pontos de viragem nos dados . Por exemplo, se você estiver calculando a média dos últimos 5 valores, as previsões serão cerca de 3 períodos atrasados ​​na resposta a pontos de viragem. Observe que se m1, o modelo de média móvel simples (SMA) é equivalente ao modelo de caminhada aleatória (sem crescimento). Se m for muito grande (comparável ao comprimento do período de estimativa), o modelo SMA é equivalente ao modelo médio. Tal como acontece com qualquer parâmetro de um modelo de previsão, é costume ajustar o valor de k para obter o melhor quotfitquot para os dados, ou seja, os menores erros de previsão em média. Aqui é um exemplo de uma série que parece exibir flutuações aleatórias em torno de uma média que varia lentamente. Primeiro, vamos tentar ajustá-lo com um modelo de caminhada aleatória, o que equivale a uma média móvel simples de 1 termo: o modelo de caminhada aleatória responde muito rapidamente às mudanças na série, mas ao fazê-lo, elege muito da quotnoisequot no Dados (as flutuações aleatórias), bem como o quotsignalquot (a média local). Se, em vez disso, tentemos uma média móvel simples de 5 termos, obtemos um conjunto de previsões mais lisas: a média móvel simples de 5 meses produz erros significativamente menores do que o modelo de caminhada aleatória neste caso. A idade média dos dados nesta previsão é de 3 ((51) 2), de modo que tende a atrasar os pontos de viragem em cerca de três períodos. (Por exemplo, uma desaceleração parece ter ocorrido no período 21, mas as previsões não se desviam até vários períodos depois). Observe que as previsões de longo prazo do modelo SMA são uma linha reta horizontal, assim como na caminhada aleatória modelo. Assim, o modelo SMA assume que não há tendência nos dados. No entanto, enquanto as previsões do modelo de caminhada aleatória são simplesmente iguais ao último valor observado, as previsões do modelo SMA são iguais a uma média ponderada de valores recentes. Os limites de confiança calculados pela Statgraphics para as previsões de longo prazo da média móvel simples não se ampliam à medida que o horizonte de previsão aumenta. Isso obviamente não está correto. Infelizmente, não existe uma teoria estatística subjacente que nos diga como os intervalos de confiança devem se ampliar para esse modelo. No entanto, não é muito difícil calcular estimativas empíricas dos limites de confiança para as previsões do horizonte mais longo. Por exemplo, você poderia configurar uma planilha em que o modelo SMA seria usado para prever 2 passos à frente, 3 passos à frente, etc., dentro da amostra de dados históricos. Você poderia então calcular os desvios padrão da amostra dos erros em cada horizonte de previsão e, em seguida, construir intervalos de confiança para previsões de longo prazo, adicionando e subtraindo múltiplos do desvio padrão apropriado. Se tentarmos uma média móvel simples de 9 termos, obtemos previsões ainda mais suaves e mais de um efeito de atraso: a idade média é agora de 5 períodos (91) 2). Se tomarmos uma média móvel de 19 termos, a média de idade aumenta para 10: Observe que, de fato, as previsões estão atrasadas em torno de 10 pontos. Qual quantidade de suavização é melhor para esta série. Aqui está uma tabela que compara suas estatísticas de erro, incluindo também uma média de 3 termos: Modelo C, a média móvel de 5 termos, produz o menor valor de RMSE por uma pequena margem ao longo dos 3 Médias temporais e de 9 termos, e suas outras estatísticas são quase idênticas. Assim, entre os modelos com estatísticas de erro muito semelhantes, podemos escolher se preferimos um pouco mais de capacidade de resposta ou um pouco mais de suavidade nas previsões. (Retornar ao topo da página.) Browns Suavização exponencial simples (média móvel ponderada exponencialmente) O modelo de média móvel simples descrito acima tem a propriedade indesejável de que trata as últimas observações k de forma igualitária e ignora completamente todas as observações precedentes. Intuitivamente, os dados passados ​​devem ser descontados de forma mais gradual - por exemplo, a observação mais recente deve ter um pouco mais de peso que o segundo mais recente, e o segundo mais recente deve ter um pouco mais de peso do que o terceiro mais recente, e em breve. O modelo de suavização exponencial simples (SES) realiza isso. Deixe 945 indicar uma constante de quotesmoothing (um número entre 0 e 1). Uma maneira de escrever o modelo é definir uma série L que represente o nível atual (isto é, o valor médio local) da série como estimado a partir de dados até o presente. O valor de L no tempo t é calculado de forma recursiva a partir de seu próprio valor anterior como este: Assim, o valor suavizado atual é uma interpolação entre o valor suavizado anterior e a observação atual, onde 945 controla a proximidade do valor interpolado para o mais recente observação. A previsão para o próximo período é simplesmente o valor suavizado atual: Equivalentemente, podemos expressar a próxima previsão diretamente em termos de previsões anteriores e observações anteriores, em qualquer uma das seguintes versões equivalentes. Na primeira versão, a previsão é uma interpolação entre previsão anterior e observação anterior: na segunda versão, a próxima previsão é obtida ajustando a previsão anterior na direção do erro anterior em uma quantidade fracionada de 945. É o erro cometido em Tempo t. Na terceira versão, a previsão é uma média móvel ponderada exponencialmente (com desconto) com o fator de desconto 1- 945: a versão de interpolação da fórmula de previsão é a mais simples de usar se você estiver implementando o modelo em uma planilha: ela se encaixa em uma Célula única e contém referências de células que apontam para a previsão anterior, a observação anterior e a célula onde o valor de 945 é armazenado. Note-se que se 945 1, o modelo SES é equivalente a um modelo de caminhada aleatória (sem crescimento). Se 945 0, o modelo SES é equivalente ao modelo médio, supondo que o primeiro valor suavizado seja igual à média. (Voltar ao topo da página.) A idade média dos dados na previsão de suavização simples-exponencial é 1 945 em relação ao período para o qual a previsão é calculada. (Isso não deve ser óbvio, mas pode ser facilmente demonstrado pela avaliação de uma série infinita.) Portanto, a previsão média móvel simples tende a atrasar os pontos de viragem em cerca de 1 945 períodos. Por exemplo, quando 945 0.5 o atraso é de 2 períodos quando 945 0.2 o atraso é de 5 períodos quando 945 0.1 o atraso é de 10 períodos e assim por diante. Para uma média de idade dada (ou seja, a quantidade de lag), a previsão de suavização exponencial simples (SES) é um pouco superior à previsão da média móvel simples (SMA) porque coloca um peso relativamente maior na observação mais recente - isto é. É um pouco mais quotresponsivech para as mudanças ocorridas no passado recente. Por exemplo, um modelo SMA com 9 termos e um modelo SES com 945 0,2 ambos têm uma idade média de 5 para os dados em suas previsões, mas o modelo SES coloca mais peso nos últimos 3 valores do que o modelo SMA e no Ao mesmo tempo, não possui 8220forget8221 sobre valores com mais de 9 períodos de tempo, como mostrado neste gráfico: Outra vantagem importante do modelo SES sobre o modelo SMA é que o modelo SES usa um parâmetro de suavização que é continuamente variável, portanto, pode otimizar facilmente Usando um algoritmo quotsolverquot para minimizar o erro quadrático médio. O valor ideal de 945 no modelo SES para esta série é 0.2961, como mostrado aqui: A idade média dos dados nesta previsão é 10.2961 3,4 períodos, o que é semelhante ao de uma média móvel simples de 6 termos. As previsões de longo prazo do modelo SES são uma linha direta horizontal. Como no modelo SMA e no modelo de caminhada aleatória sem crescimento. No entanto, note que os intervalos de confiança computados por Statgraphics agora divergem de forma razoável e que eles são substancialmente mais estreitos do que os intervalos de confiança para o modelo de caminhada aleatória. O modelo SES assume que a série é um pouco mais previsível do que o modelo de caminhada aleatória. Um modelo SES é realmente um caso especial de um modelo ARIMA. Então a teoria estatística dos modelos ARIMA fornece uma base sólida para o cálculo de intervalos de confiança para o modelo SES. Em particular, um modelo SES é um modelo ARIMA com uma diferença não-sazonal, um termo MA (1) e nenhum termo constante. Também conhecido como um modelo quotARIMA (0,1,1) sem constantequot. O coeficiente MA (1) no modelo ARIMA corresponde à quantidade 1- 945 no modelo SES. Por exemplo, se você ajustar um modelo ARIMA (0,1,1) sem constante para a série analisada aqui, o coeficiente MA (1) estimado é 0.7029, o que é quase exatamente um menos 0.2961. É possível adicionar a hipótese de uma tendência linear constante não-zero ao modelo SES. Para fazer isso, basta especificar um modelo ARIMA com uma diferença não-sazonal e um termo MA (1) com uma constante, ou seja, um modelo ARIMA (0,1,1) com constante. As previsões a longo prazo terão uma tendência que é igual à tendência média observada durante todo o período de estimação. Você não pode fazer isso em conjunto com o ajuste sazonal, porque as opções de ajuste sazonal são desativadas quando o tipo de modelo é definido como ARIMA. No entanto, você pode adicionar uma tendência exponencial constante a longo prazo a um modelo de suavização exponencial simples (com ou sem ajuste sazonal) usando a opção de ajuste de inflação no procedimento de Previsão. A taxa de quotinflação adequada (taxa de crescimento) por período pode ser estimada como o coeficiente de inclinação em um modelo de tendência linear ajustado aos dados em conjunto com uma transformação de logaritmo natural, ou pode ser baseado em outras informações independentes sobre perspectivas de crescimento a longo prazo . (Voltar ao topo da página.) Browns Linear (ou seja, duplo) Suavização exponencial Os modelos SMA e os modelos SES assumem que não há nenhuma tendência de nenhum tipo nos dados (o que normalmente é OK ou pelo menos não muito ruim para 1- Previsões passo a passo quando os dados são relativamente barulhentos) e podem ser modificados para incorporar uma tendência linear constante como mostrado acima. E quanto a tendências de curto prazo Se uma série exibir uma taxa de crescimento variável ou um padrão cíclico que se destaca claramente contra o ruído e, se houver necessidade de prever mais de 1 período à frente, a estimativa de uma tendência local também pode ser um problema. O modelo de alisamento exponencial simples pode ser generalizado para obter um modelo de alisamento exponencial linear (LES) que calcula estimativas locais de nível e tendência. O modelo de tendência mais simples do tempo é o modelo de suavização exponencial linear Browns, que usa duas séries suavizadas diferentes centradas em diferentes pontos no tempo. A fórmula de previsão é baseada em uma extrapolação de uma linha através dos dois centros. (Uma versão mais sofisticada deste modelo, Holt8217s, é discutida abaixo.) A forma algébrica do modelo de alisamento exponencial linear Brown8217s, como a do modelo de suavização exponencial simples, pode ser expressa em várias formas diferentes, mas equivalentes. A forma quotstandardquot deste modelo geralmente é expressa da seguinte maneira: Seja S denotar a série de suavização individual obtida pela aplicação de suavização exponencial simples para a série Y. Ou seja, o valor de S no período t é dado por: (Lembre-se que, sob simples Suavização exponencial, esta seria a previsão de Y no período t1.) Então, deixe Squot indicar a série duplamente suavizada obtida aplicando o alisamento exponencial simples (usando o mesmo 945) para a série S: Finalmente, a previsão para Y tk. Para qualquer kgt1, é dada por: Isto produz e 1 0 (isto é, traga um pouco e deixe a primeira previsão igual a primeira observação real) e e 2 Y 2 8211 Y 1. Após o que as previsões são geradas usando a equação acima. Isso produz os mesmos valores ajustados que a fórmula com base em S e S, se estes últimos foram iniciados usando S 1 S 1 Y 1. Esta versão do modelo é usada na próxima página que ilustra uma combinação de suavização exponencial com ajuste sazonal. Holt8217s Linear Exponential Suavizante Brown8217s modelo LES calcula estimativas locais de nível e tendência ao suavizar os dados recentes, mas o fato de que ele faz com um único parâmetro de suavização coloca uma restrição nos padrões de dados que ele pode caber: o nível e a tendência Não podem variar a taxas independentes. O modelo LES de Holt8217s aborda esse problema ao incluir duas constantes de suavização, uma para o nível e outra para a tendência. A qualquer momento t, como no modelo Brown8217s, existe uma estimativa L t do nível local e uma estimativa T t da tendência local. Aqui, eles são computados de forma recursiva a partir do valor de Y observado no tempo t e as estimativas anteriores do nível e tendência por duas equações que aplicam o alisamento exponencial separadamente. Se o nível estimado e a tendência no tempo t-1 são L t82091 e T t-1. Respectivamente, então a previsão de Y tshy que teria sido feita no tempo t-1 é igual a L t-1 T t-1. Quando o valor real é observado, a estimativa atualizada do nível é calculada de forma recursiva interpolando entre Y tshy e sua previsão, L t-1 T t-1, usando pesos de 945 e 1- 945. A alteração no nível estimado, Lt 8209 L t82091. Pode ser interpretado como uma medida ruim da tendência no tempo t. A estimativa atualizada da tendência é então calculada de forma recursiva interpolando entre L t 8209 L t82091 e a estimativa anterior da tendência, T t-1. Usando pesos de 946 e 1-946: a interpretação da constante de simulação de tendência 946 é análoga à da constante de alívio de nível 945. Modelos com valores pequenos de 946 assumem que a tendência muda muito lentamente ao longo do tempo, enquanto modelos com 946 maiores assumem que está mudando mais rapidamente. Um modelo com um grande 946 acredita que o futuro distante é muito incerto, porque os erros na estimativa de tendência se tornam bastante importantes ao prever mais de um período à frente. (Voltar ao topo da página.) As constantes de suavização 945 e 946 podem ser estimadas da maneira usual, minimizando o erro quadrático médio das previsões de 1 passo à frente. Quando isso é feito em Statgraphics, as estimativas revelam-se 945 0,3048 e 946 0,008. O valor muito pequeno de 946 significa que o modelo assume mudanças muito pequenas na tendência de um período para o outro, então, basicamente, esse modelo está tentando estimar uma tendência de longo prazo. Por analogia com a noção de idade média dos dados utilizados na estimativa do nível local da série, a idade média dos dados utilizados na estimativa da tendência local é proporcional a 1 946, embora não exatamente igual a ela. . Neste caso, isso é 10.006 125. Este não é um número muito preciso na medida em que a precisão da estimativa de 946 não é realmente 3 casas decimais, mas é da mesma ordem geral de grandeza que o tamanho da amostra de 100, então Este modelo está com uma média de bastante história na estimativa da tendência. O gráfico de previsão abaixo mostra que o modelo de LES estima uma tendência local um pouco maior no final da série do que a tendência constante estimada no modelo SEStrend. Além disso, o valor estimado de 945 é quase idêntico ao obtido pela montagem do modelo SES com ou sem tendência, então este é quase o mesmo modelo. Agora, isso parece previsões razoáveis ​​para um modelo que deveria estimar uma tendência local Se você 8220eyeball8221 este gráfico, parece que a tendência local virou para baixo no final da série O que aconteceu Os parâmetros deste modelo Foi estimado pela minimização do erro quadrado das previsões de 1 passo à frente, não de previsões a mais longo prazo, caso em que a tendência não faz muita diferença. Se tudo o que você está procurando é erros de 1 passo a passo, você não está vendo a imagem maior das tendências em relação a (digamos) 10 ou 20 períodos. Para obter este modelo mais em sintonia com a extrapolação dos dados no olho, podemos ajustar manualmente a constante de alívio da tendência, de modo que ele use uma linha de base mais curta para a estimativa de tendência. Por exemplo, se optar por definir 946 0,1, a idade média dos dados utilizados na estimativa da tendência local é de 10 períodos, o que significa que estamos em média a tendência nos últimos 20 períodos ou mais. Aqui é o que parece o gráfico de previsão se definimos 946 0,1 enquanto mantemos 945 0,3. Isso parece intuitivamente razoável para esta série, embora seja provavelmente perigoso extrapolar esta tendência mais de 10 períodos no futuro. E as estatísticas de erro Aqui está uma comparação de modelo para os dois modelos mostrados acima, bem como três modelos SES. O valor ideal de 945 para o modelo SES é de aproximadamente 0,3, mas resultados semelhantes (com um pouco mais ou menos capacidade de resposta, respectivamente) são obtidos com 0,5 e 0,2. (A) Holts linear exp. Alisamento com alpha 0.3048 e beta 0.008 (B) Holts linear exp. Alisamento com alfa 0.3 e beta 0.1 (C) Suavização exponencial simples com alfa 0.5 (D) Suavização exponencial simples com alfa 0.3 (E) Suavização exponencial simples com alfa 0.2 Suas estatísticas são quase idênticas, então realmente podemos usar a escolha com base De erros de previsão de 1 passo à frente na amostra de dados. Temos de voltar atrás em outras considerações. Se acreditamos firmemente que faz sentido basear a estimativa da tendência atual sobre o que aconteceu nos últimos 20 períodos, podemos fazer um caso para o modelo LES com 945 0,3 e 946 0,1. Se quisermos ser agnósticos sobre se existe uma tendência local, então um dos modelos SES pode ser mais fácil de explicar e também daria mais previsões do meio da estrada para os próximos 5 ou 10 períodos. (Retornar ao topo da página.) Qual tipo de tendência-extrapolação é melhor: horizontal ou linear Evidências empíricas sugerem que, se os dados já foram ajustados (se necessário) para inflação, então pode ser imprudente extrapolar linear de curto prazo Tendências muito distantes no futuro. As tendências evidentes hoje podem diminuir no futuro devido a causas variadas, como obsolescência do produto, aumento da concorrência e recessões cíclicas ou aumentos em uma indústria. Por este motivo, o alisamento exponencial simples geralmente apresenta melhor fora da amostra do que seria de esperar, apesar da sua extrapolação de tendência horizontal de quotnaivequot. As modificações de tendências amortecidas do modelo de alisamento exponencial linear também são freqüentemente usadas na prática para introduzir uma nota de conservadorismo em suas projeções de tendência. O modelo LES da modificação amortecida pode ser implementado como um caso especial de um modelo ARIMA, em particular, um modelo ARIMA (1,1,2). É possível calcular intervalos de confiança em torno de previsões de longo prazo produzidas por modelos exponenciais de suavização, considerando-os como casos especiais de modelos ARIMA. (Beware: nem todo o software calcula os intervalos de confiança para esses modelos corretamente.) A largura dos intervalos de confiança depende de (i) o erro RMS do modelo, (ii) o tipo de alisamento (simples ou linear) (iii) o valor (S) da (s) constante (s) de suavização e (iv) o número de períodos adiante que você está prevendo. Em geral, os intervalos se espalham mais rápido, à medida que 945 se ampliam no modelo SES e se espalham muito mais rápido quando o alisamento linear, em vez do simples, é usado. Este tópico é discutido mais adiante na seção de modelos ARIMA das notas. (Voltar ao topo da página.)

Comments

Popular Posts